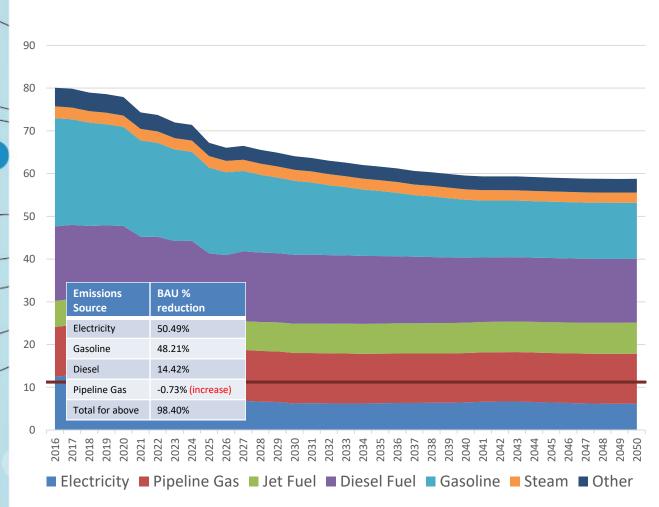
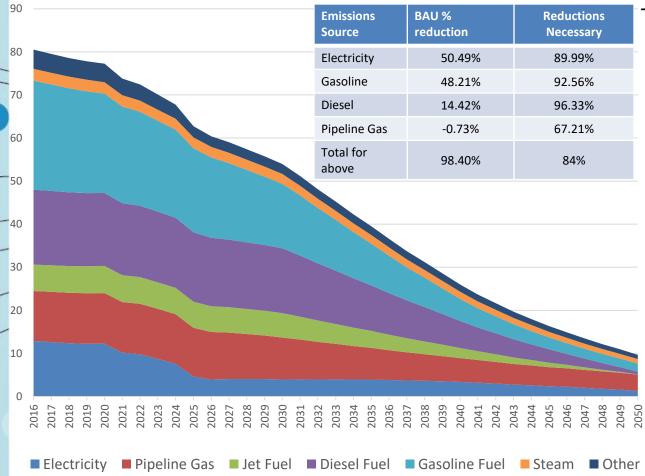

100% Fossil Free Electricity

June 27, 2018

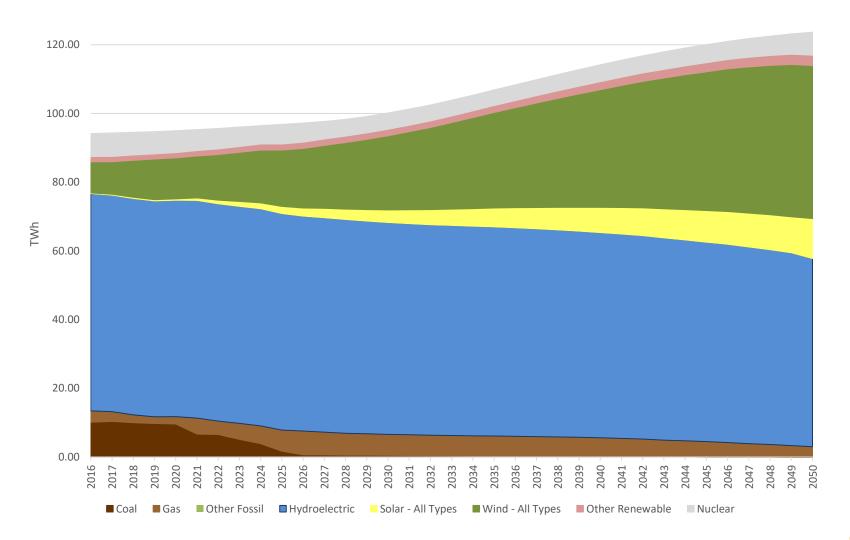


Current Washington Emissions Levels

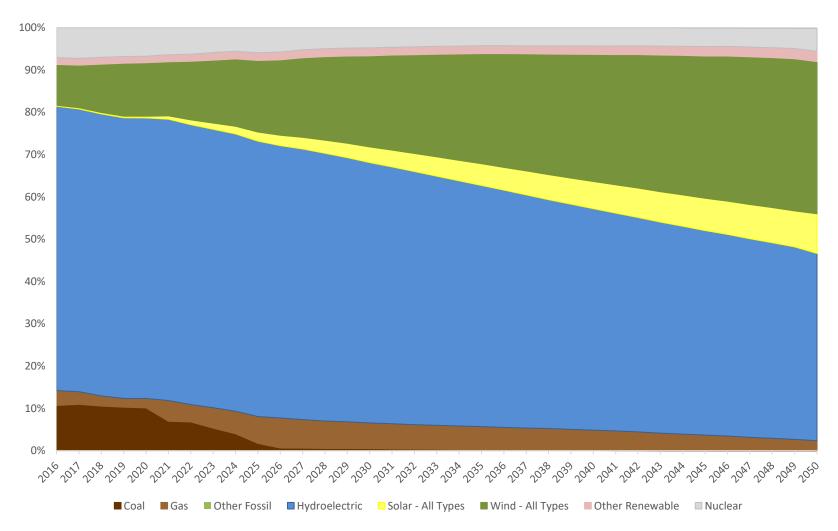


If We Do Nothing

- Some natural reductions including new renewables and expanded electric vehicles
- Without policy, utilities continue to invest in fossil fuel gas and we do not electrify nearly enough transportation
- Continued growth of fossil fuel gas in residential, commercial and industrial sectors


The Low Carbon Pathway

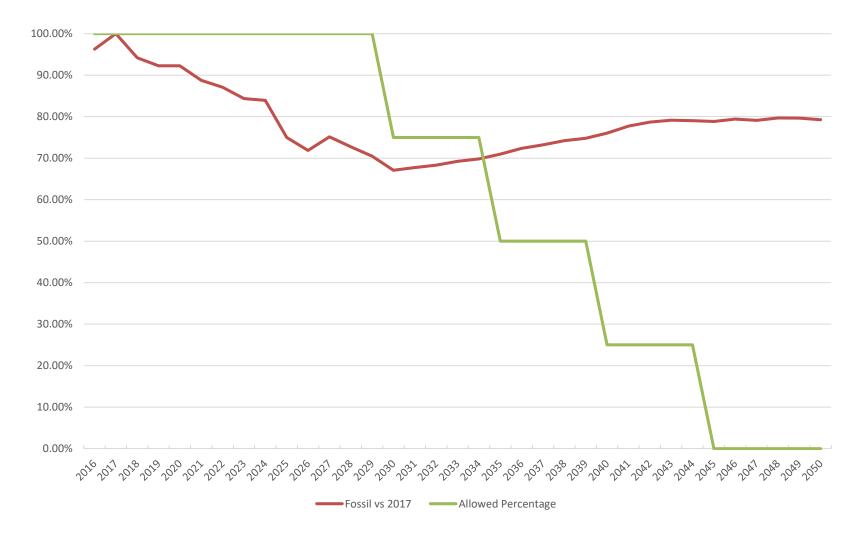
To succeed we must:


- Expand electrification of transportation
- Reduce electric sector emissions to near zero (electricity becomes largest source of energy)
- Expand energy efficiency
- Stop investing in direct use of gas

Electricity Mix to Achieve WA Goals

Electricity Mix to Achieve WA Goals

Policy Outline

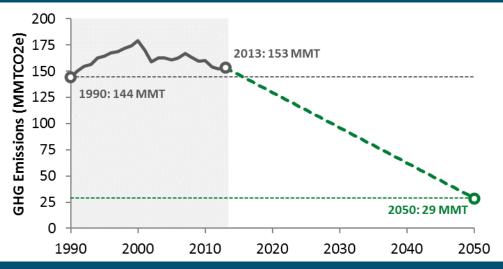

Year	Fossil Fuel Reduction Requirement	Penalty for exceeding (\$/MWh)
2030	Coal Phase Out	
2030	25%	\$50
2035	50%	\$50
2040	75%	\$75
2045	100%	\$100

Revenue from penalty directed to:

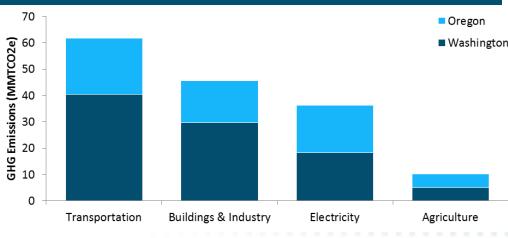
- 1/3 to mitigating low income impacts
- 2/3 to preventing use of the penalty in the future

Impact

Modeling pathways to 100% Fossil-Free Grid



- In 2017, the Public Generating Pool (PGP) sponsored the Pacific Northwest Low Carbon Scenario Analysis, a study of alternative policies for achieving reductions in electric sector carbon emissions in the Northwest
 - The original study can be found here: <u>https://www.ethree.com/e3-</u> <u>completes-study-of-policy-mechanisms-to-decarbonize-the-electric-</u> <u>sector-in-the-northwest/</u>
- In 2018, Climate Solutions sponsored a follow-up study to explore specific questions left unanswered by the original study
- This document reports on the assumptions and results from the additional analysis



- Oregon and Washington are currently exploring potential commitments to deep decarbonization in line with international goals:
 - 80-91% economy wide reductions below 1990 levels by 2050 (proposed)
- The study was conceived to provide information to policymakers
 - How can we reduce carbon in the electricity sector at the lowest cost in Oregon and Washington?
 - What is the role of wind, solar, energy storage, natural gas and other resources for generation?
 - What is the importance of the region's existing base of carbon-free hydro generation?
 Energy+Environmental Economics

Historical and Projected GHG Emissions for OR and WA

2013 CO2 Emissions for Oregon and Washington

Sources: Report to the Legislature on Washington Greenhouse Gas Emissions Inventory: 2010 – 2013 **1 1** (<u>link</u>); Oregon Greenhouse Gas In-boundary Inventory (<u>link</u>)

Study used E3's RESOLVE model to develop optimal resource portfolios for the Northwest

- RESOLVE is an optimal capacity expansion model used in resource planning
 - Designed for high renewable systems
 - Utilized in several jurisdictions including California, Hawaii and New York
- Selects combination of renewable and conventional resources to minimize operational and investment costs over time
 - Simulates operations of the Northwest electricity system including existing hydro and thermal generators
 - Adds new resources as needed
 - Complies with renewable energy and carbon policy targets
 - Meets electricity system reliability needs

Resource Type	Examples of New Resource Options
Natural Gas Generation	 Simple cycle gas turbines Reciprocating engines Combined cycle gas turbines Repowered CCGTs
Renewable Generation	 Geothermal Hydro upgrades Solar PV Wind
Energy Storage	 Batteries (>1 hr) Pumped Storage (>12 hr)
Energy Efficiency	 HVAC & appliances Lighting
Demand Response	 Interruptible tariff (ag) DLC: space & water heating (res)

Information about E3's RESOLVE model can be found here: https://www.ethree.com/tools/resolve-renewable-energy-solutions-model,

Energy+Environmental Economics

Model Limitations

- The RESOLVE model is conservative, overestimating the difficulty of achieving reductions and overestimating the cost
- Major limitations
 - Energy efficiency supply curve is limited to NWPCC's, which has consistently underestimated EE acquisition by 10%+.
 - Demand response is limited to ~1,600MW and restricted to an ag/industrial interruptable rate and space/water heating in residential settings.
 - Model balances over individual days, precluding multi-day storage.
 - Doesn't model deeper market coordination across Western US
 - Doesn't consider technological innovation for generation, efficiency or other opportunities

Energy+Environmental Economics

nics															
Additio						1	1	ŕ			ÿ				
Auunuo	C				0			0.	•	•					

New Climate Solutions Scenarios

Scenario 1: 100% Fossil Fuel reductions

- Assumes biogas and SMRs are not available

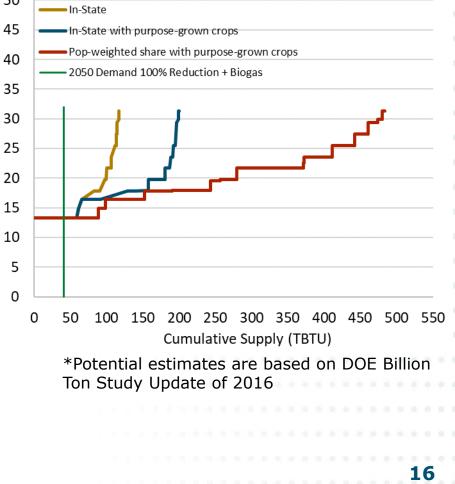
Scenario 2: 100% Reductions + Biogas

Assumes unconstrained pipeline biogas is available for combustion in gas generators at a cost of \$31/MMBtu

Sensitivity: Alt. Technology Costs 100% Reductions + Biogas

- Updates solar and battery costs with more recent studies
- Reduces wind costs by 20% -- still conservative based on regional IRP estimates
- Reduces biogas costs by 20% consistent with existing Canadian markets

Scenario 3: 100% Reductions + Off-Ramp


- Allows biogas as in Scenario 1
- Carbon cap used to drive investments towards a 100% GHG emissions reductions with an off-ramp of \$200 per ton of CO2 in 2050

Pipeline Biogas Potential Assumptions

- The pipeline biogas consumed in the 100% GHG **Reductions + Biogas** scenario is about a third of the combined Oregon and Washington in-state potential
 - In a scenario where economywide decarbonization is ongoing, 30% of in-state supply may be an upper limit for the available biogas potential that can be dedicated to the electricity sector
 - Assumes no purpose-grown crops
 - Assumed market price of \$31/MMBtu reflects other uses

50 In-State 45 In-State with purpose-grown crops Pop-weighted share with purpose-grown crops 40 Commodity Cost (\$/MMBTU) 2050 Demand 100% Reduction + Biogas 35 30 25 20 15

Estimated 2040 Oregon and Washington Biomethane Potential

Base Cost Assumptions for Candidate Technologies

Technology	Resource	Unit	2018	2022	2026	2030
	Annual Core NW Fuel Costs	\$/MMBtu	\$3.24	\$2.95	\$3.32	\$3.82
Gas	CT-Frame	\$/kW-ac	\$950	\$950	\$950	\$950
	CCGT	\$/kW-ac	\$1,300	\$1,300	\$1,300	\$1,300
Under Hermoder	Non Powered Dam	\$/kW-ac	\$4,500	\$4,500	\$4,500	\$4,500
Hydro Upgrades	Upgrades	\$/kW-ac	\$1,277	\$1,254	\$1,206	\$1,158
Geothermal	Central Oregon	\$/kW-ac	\$4,557	\$4,557	\$4,557	\$4,557
	Columbia River Basin	\$/kW-ac	\$1,925	\$1,910	\$1,896	\$1,882
Wind	Montana	\$/kW-ac	\$1,823	\$1,810	\$1,796	\$1,783
	Wyoming	\$/kW-ac	\$1,722	\$1,709	\$1,697	\$1,684
Color	WA/OR	\$/kW-ac	\$1,617	\$1,558	\$1,513	\$1,438
Solar	WA/OR	\$/kW-dc	\$1,244	\$1,199	\$1,164	\$1,106
Battery Storage (4-hr Storage)	-	\$/kWh	\$587	\$455	\$372	\$352
Pumped Storage (10-hr Storage)	-	\$/kWh	\$261	\$261	\$261	\$261

Base capital cost assumptions are the same as in the original PGP study

Capital costs are kept flat beyond 2030

Energy+Environmental Economics

Energy+Environmental Economics

				D					•	j.	ľ.	e					
					0	0	0	0	0	0	•	•	•				

2050 Portfolio Summary 100% Reduction HWGS

<u></u> Σι	ummary 84 GW of	new renewabl	e capacity added	Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
		n 100% Reduct		Reference	-	-	20%	91%
•		new storage c		100% Reduction HWGS	+\$18,377	27.6	62%	135%
•	Gas gener 2050	ation eliminat	ed entirely by					
	F	Resources Added	(MW)		Energy Bala	ance (aMW)		
	120,000			50,000			Curtailm	ent
				45,000 -			DR Inc EE*	
Ñ	100,000 -			40,000 -			Pumped	Storage
ž				35,000			Battery S	torage
Installed Capacity (MW)	80,000			Annual Generation (aMW) 30,000 - 25,000 - 15,000 -			Solar Wind	
Cap	60,000 -			25,000 -			Geotherr	nal
alled	00,000			23,000			Biomass	
Insta	40,000 -			ថ្មី 20,000 - ធ្ម			Hydro (U	pg)
	,			15,000			Hydro	
	20,000 -			10,000			Gas (CT) Gas (CCG	iT)
				5,000			Coal	,
	o 🕂		-,,	0			Nuclear	
		Reference	100% Reduction HWGS	Ref	erence 100	% Reduction HWGS	Load	

Energy+Environmental Economics

in load forecast (based on NWPCC 7th Plan)

There are significant *modeling* challenges under a scenario without dispatchable thermal generation

+ The current version of RESOLVE was not designed to consider cases without some form of dispatchable capacity

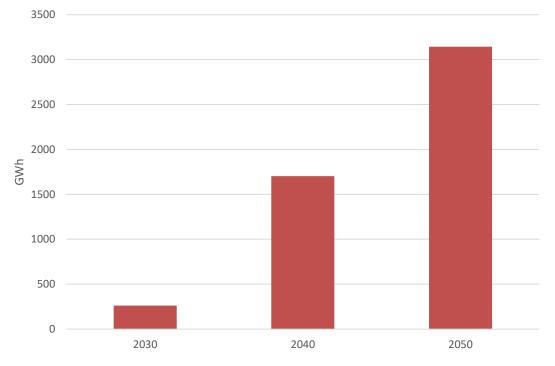
- The model does not provide sufficiently robust examination of unusual weather conditions that drive the need for dispatchable capacity
- The model cannot consider multi-day energy storage as a potential solution to the energy constraints that are encountered
- The model does not consider land-use or other environmental limitations on resource supply or transmission capacity
- More study is needed to examine resource availability and transmission requirements
- More study is needed to analyze whether the system as modeled meets reliability expectations

There are significant <u>reliability</u> challenges under a scenario without dispatchable thermal generation

- + The scenario considers the effect of a 100% GHG reduction cap with only hydro upgrades, wind, geothermal, solar, and electric energy storage available as new resources
- Without dispatchable thermal generation capacity, it may be difficult to meet load under extreme weather conditions
 - E.g., extended cold-weather period with low wind and solar production that occurs during a drought year
 - This challenge would only increase under a scenario with significant electrification of building and vehicle loads to meet long-term carbon goals

2050 Portfolio Summary 100% Reduction + Biogas Scenario

<u>н</u> •	ighlights 21 GW of new renewable capacity added by 2050	Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
•	41 Tbtu of pipeline biogas used in gas	Reference	-	-	20%	91%
	generators in 2050	100% Reduction + Biogas	+\$3,264	27.6	44%	115%
•	Least cost option for meeting a 100% GHG reduction target					
	Resources Added (MW)		Energy Baland	ce (aMW)		
	60,000**	40,000**			Curtailm	ent
		25.000			DR	
5	50,000 -	35,000 -			Inc EE*	Storage
Installed Capacity (MW)		3 0,000			Battery S	-
ity (40,000 -	Z5,000	_		Solar	-
apac		in 23,000			Wind	
sd Ca	30,000 -	Amnual Generation (aMW) 25,000 - 20,000 - 15,000 - 10,000 -			Geother	mal
talle		<u> </u>			Biomass	
lns	20,000 -				Hydro (U Hydro	(pg)
		ü 10,000			Gas (CT)	
	10,000	5,000			Gas (CCG	GT)
					Coal	
	0 Reference 100% Reduction + Biogas	0 Refe	ance 100% B	eduction + Biogas	Nuclear	
					Load	
E	pergy+Environmental Economics **Note the change in th	e Y-axis scale change	EE shown here is in	cremental to effici	ency included	22

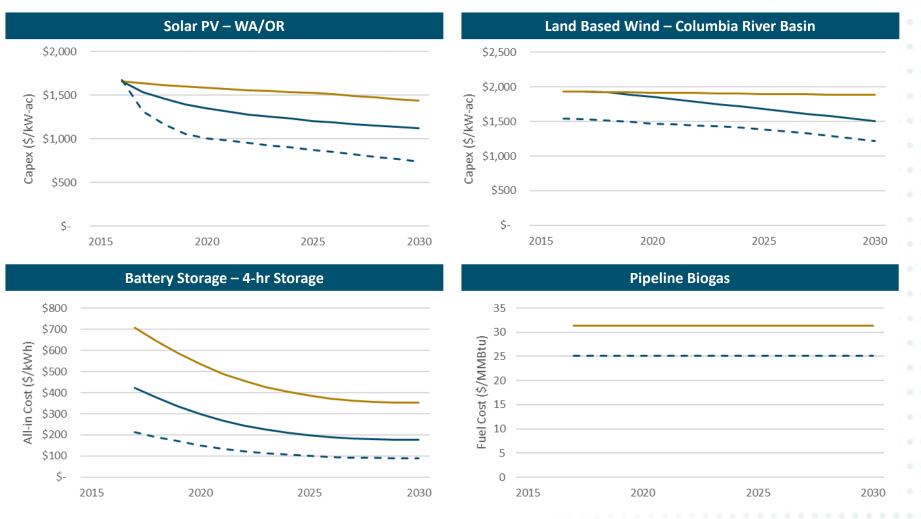

Energy+Environmental Economics **Note

Note the change in the Y-axis scale change

in load forecast (based on NWPCC 7th Plan)

Efficiency Incremental to Projections

- Model relies on conservative EE supply curve from NWPCC without accounting for new technology or improved methods of measuring and valuing
- Represents a 7% increase over current projections



- In the Alternative Technology Cost sensitivity, this study explores potential increased cost reductions for emerging technologies:
 - Solar PV : capital costs updated using low cost projections for NREL 2017 Annual Technology Baseline (ATB)*
 - Land based wind: capital costs reduced by 20% relative to the Base Case
 - <u>Battery storage</u>: capital costs reduced by 70% relative to the Base Case. Derived using Lazard LCOS 3.0**
 - Biogas: fuel cost of biogas reduced by 20% relative to the Base Case

Sensitivity captures the potential impact of technological breakthrough on the optimal renewable portfolio for the Northwest

*NREL 2017 Annual Technology Baseline: <u>https://atb.nrel.gov/electricity/2017/</u> **Lazard Levelized Cost of Storage 3.0: <u>https://www.lazard.com/media/</u> Energy+Environmental Economics

- Original PGP Study Base; - Original PGP Study Low Tech Costs; - - - Climate Solutions Alt. Tech Co

Energy+Environmental Economics

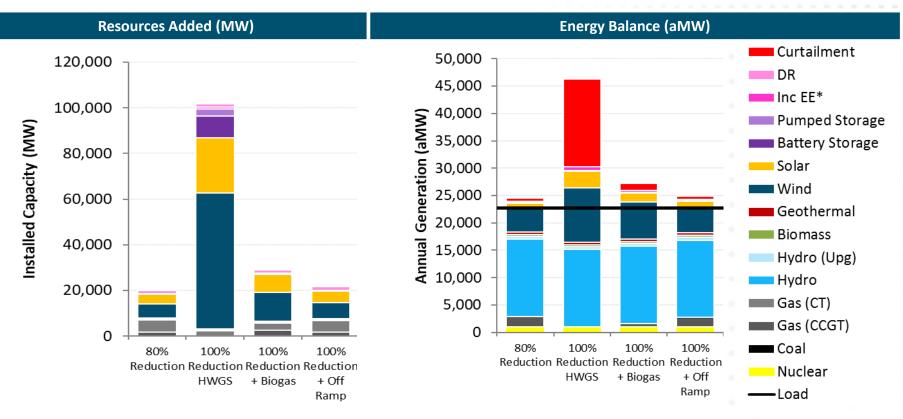
2050 Portfolio Summary – Climate Solutions Alternative Technology Costs Sensitivity

<u></u> Σι	J mmary 7 GW of renewable capacity and 9 GW of	Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
	storage capacity are added by 2050 in the	Reference (Base)	-	-	21%	91%
	Reference Scenario 28 GW of renewable capacity and 7 GW of	100% Red. + Biogas (Alt. Technology Costs)	+\$1,317	27.6	47%	119%
	storage capacity are added by 2050 in the 100%	Reference (Alt. Technology Costs)	-	-	21%	92%
	Reduction WWGS + Biogas Scenario	100% Red. + Biogas (Alt. Technology Costs)	+\$2,165	27.3	47%	119%
	Resources Added (MW)		Energy Bala	nce (aMW)		
	60,000	40,000			Curtailme	ent
	50,000 -	35,000 -			Inc EE*	
ŝ	50,000	<u>ک</u> 30,000			Pumped	Storage
Σ	40,000			_	Battery S	torage
icity		u 25,000			Solar	
Capa	30,000	e 20,000			Wind Geotherr	mal
Installed Capacity (MW)	20.000	Apunual Generation (aMM) 25,000 - 20,000 - 15,000 - 10,000 -			Biomass	
nstal	20,000	10,000 -			Hydro (U	pg)
=	10,000				Hydro	
		5,000			Gas (CT)	
			Deference		Gas (CCG	T)
	Reference Reference 100% Reduction + (Alt. Technology Biogas	Reference	Reference (Alt. Technolog	v Biogas	Coal	
	Costs) (Alt. Technology Costs)		Costs)	(Alt. Technology		
	(0, 0			., 0	Nuclear — Load	

Energy+Environmental Economics

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

2050 Portfolio Summary 100% Reduction + Off-Ramp


ghlights 7 GW of gas capacity added by 2050 13 GW of new renewable capacity added	Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
by 2050	Reference	-	-	20%	91%
Results in over 80% GHG reductions	100% Reduction + Off-Ramp	+\$1,148	21.8	33%	104%
relative to 1990 levels					
Resources Added (MW)		Energy Balanc	e (aMW)		
60,000**	40,000**			Curtailm	ent
50.000 -	35,000 -			Inc EE*	
30,000	30,000			Pumped	-
40,000	کو 25,000 -			Solar	torage
30.000 -	20,000			Wind	mal
	jene				IIai
20,000	<u>15,000</u>			Hydro (U	pg)
	10,000			Hydro	
10,000 -				Gas (CT)	
	5,000				iT)
	0	- 100% [
Reference 100% Reduction + Off Ramp	Keterenc	e 100%h	Daman		
	7 GW of gas capacity added by 2050 13 GW of new renewable capacity added by 2050 Results in over 80% GHG reductions relative to 1990 levels 60,000 ** 50,000 - 40,000 - 30,000 - 10,000 - Reference 100% Reduction + Off	7 GW of gas capacity added by 2050 13 GW of new renewable capacity added by 2050 Results in over 80% GHG reductions relative to 1990 levels Resources Added (MW) 60,000 40,000 40,000 0 0 0 0 0 0 0 0 0 0 0 0	7 GW of gas capacity added by 2050 13 GW of new renewable capacity added by 2050 Results in over 80% GHG reductions relative to 1990 levels Resources Added (MW) Energy Balanc 60,000** 50,000 40,000 20,000 10,000 Reference 100% Reduction + Off-Ramp +\$1,148 Control 100% Reduction + Off-Ramp 1 +\$1,148 Control 100% Reduction	7 GW of gas capacity added by 2050 (\$MM/yr.) Reductions 13 GW of new renewable capacity added by 2050 Results in over 80% GHG reductions relative to 1990 levels 100% Reduction + Off-Ramp +\$1,148 21.8 Resources Added (MW) Energy Balance (aMW) 60,000 40,000 30,000 30,000 20,000 15,000 0 Reference 100% Reduction + Off 10,000 5,000 5,000 0 Reference 100% Reduction + Off	7 GW of gas capacity added by 2050 Reductions Reductions Reductions RPS % 13 GW of new renewable capacity added by 2050 Results in over 80% GHG reductions relative to 1990 levels - - 20% 100% Reduction + Off-Ramp +\$1,148 21.8 33% Curtailmont 60,000 ** - - 20% 40,000 30,000 30,000 - - Curtailmont 90,000 ** - - - Curtailmont 10,000 - - - - - Curtailmont 10,000 -

Energy+Environmental Economics

**Note the change in the Y-axis scale change

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

****Note the change in the Y-axis scale change**

2050 Scenario Summary All Scenarios and Sensitivities

Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Avg GHG Abatement Cost (\$/ton)	Effective RPS %	Zero Carbon %	Renewable Curtailment (aMW)
Original Study Assumptions						
Reference	_	_	—	20%	91%	201
100% Reduction HWGS	+\$18,377	27.6	\$665	62%	135%	14,901
100% Reduction + Biogas	+\$3,264	27.6	\$118	45%	116%	1,082
100% Reduction + Off-Ramp	+\$1,148	21.8	\$53	33%	104%	591
100% Reduction + SMR	+\$6,574	27.6	\$238	37%	130%	852
Alternative Technology Costs S	ensitivity					
Reference (Base Case)	+\$818	-0.3	—	21%	91%	201
Reference	-	—	—	21%	92%	277
100% Reduction + Biogas	+\$2,165	27.3	\$79	47%	119%	1,354

Key Takeaways

- We can achieve 100% fossil-free energy with existing technologies
- Using renewable natural gas for integration presents the least-cost pathway for eliminating fossil fuels from the electricity sector
- I00% fossil-free electricity in WA and OR will reduce over 27MMTCO2e beyond BAU

